Today's announcements

« MP2, due on 02/09, 11:59pm
e lab_gdb release is to be announced on piazza

e First in-lab exam, Feb 10, 11, 12!

Make sure to come to the lab to which you are
registered, only then you will be graded!

e Exam materials:
https://chara.cs.illinois.edu/cs225/exams/mtl/

Where were we? Constructors, Destructors and Copy Constructors

Write the copy constructor function signature as it appears in sphere class definition:

List two instances in which a class's copy constructor is called:

Write the destructor function signature as it appears in sphere class definition:

List two instances in which a class's destructor is called:

The destructor, a summary:

1. Destructor is never “called.” Rather, we provide it for the
system to use In two situations:

a)
D)

2. If your constructor, , allocates
dynamic memory, then you need a destructor.

3.Destructor typically consists of a sequence of delete
statements.

class sphere/{

public:
//tons of other stuff
~sphere () ;

private:
double theRadius;
1nt numAtts;
string * atts;

}r

’/ L/

One morle prObIem def ot/ 6&5\5/5/7/)76/75) Me/)?éera)/ée y SO we redefine =.

class sphere/{

public:

sphere () ;
sphere (double r);
sphere (const sphere & oriqg);

~sphere () ;

operator=

private:

double theRadius;
1nt numAtts;

string * atts;

by

or
(l overload "

1nt main () {

sphere a, D;

// initialize a
b = a;
return 0;

J V724 fcy

Ked

Overloaded operators:

1nt main () {
// declare a,b,cC

. . . | // overloaded operator
/ / 1nitialize a 4 o sphere & sphere::operator+

C = a -+ b; (const sphere & s) {
return 0O;

Some things to think about...

Operator=:

// overloaded =
- sphere & sphere::operator=(const sphere & rhs) {

C
j

1Nt NUmALtts; |

string * attributes; 1nt main () {
sphere a, b;

b // initialize a
b = a;

return 0O;

The Rule of the Big Three:

If you have a reason to implement any one of

then you must implement all three.

Hbject Oriented Programming
Three fundamental characteristics:

encapsulation - separating an object’s data and implementation
from its interface.

Inheritance -

polymorphism - a function can behave differently, depending on
the type of the calling object.

