Announcements

MP4 available, due

, 11:59p. EC due

, 11:59p.

"Tree of Life"
800S Asinsq mil

Tees:

- "... most important nonlinear structure in computer science."
 - -- Donald Knuth, Art of Computer Programming Vol 1

A tree: _____

We'll study more specific trees:

Tree terminology:

- •What's the longest English word you can make using the vertex labels in the tree (repeats allowed)?
- •Find an edge that is not on the longest path in the tree. Give that edge a reasonable name.

For the rest of the exercises, assume the tree is rooted.

- •One of the vertices is called the "root" of the tree. Guess which one it is.
- •Make an English word containing the names of the vertices that have a parent but no sibling.
- How many parents does each vertex have?
- •Which vertex has the fewest children?
- •Which vertex has the most ancestors?
- Which vertex has the most descendants?
- List all the vertices is b's left subtree.
- •List all the leaves in the tree.

Binary tree, recursive definition:

An (important) example of a function on a binary tree: height(t) -- length of longest path from root to a leaf

Given a tree T, write a recursive defn of the height of T, height(T):

Full Binary tree: a tree in which every node has 2 or 0 children

F is a full binary tree if and only if:

- F={} OR,
- $F=\{r, T_L, T_R\}$, and

Perfect Binary tree:

Perfect tree of height h, P_h:

- P₁ is an empty tree
- if h > -1, then P_h is {r, T_L , T_R }, where T_L and T_R are P_{h-1} .

P₁:

Check for understanding:

How many nodes in a perfect tree of height h?