Announcements

Full Binary Tree:
no child is a single child

MP4 available, due , 11:59p.

Perfect Binary tree -

Perfect tree of height h, P_h:

- if h= -1, then P_h is {}
- if h > -1, then P_h is $\{r, T_L, T_R\}$, where T_L and T_R are P_{h-1} .

P₀: P₂:

P₁:

Complete Binary tree: for any level k in [0,h-1], level k has 2^k nodes, and on level h, all nodes are pushed to the left.

http://xlinux.nist.gov/dads//HTML/completeBinaryTree.html

Check for understanding:

Is every full tree complete?

Is every complete tree full?

Mark each full, complete and perfect binary tree.

Rooted, directed, ordered, binary trees

Tree ADT:

insert

remove

traverse

```
template <class T>
class tree{
public:
• • •
private:
   struct treeNode{
      T data;
      treeNode * left;
      treeNode * right;
   treeNode * root
• • •
```

Theorem: if there are n data items in a binary tree, then there are ____ null pointers.

Traversal – scheme for processing all the data in the structure...

a y i s h o n d

Traversal – scheme for visiting every node.

http://www.qmatica.com/DataStructures/Trees/AVL/AVLTree.html

Traversal – scheme for visiting every node.

- At each node, two choices for direction (left, right)
- After both subtrees of a node are complete, move back up tree
- Each node is "visited" 3 times in a traversal.
- Each of those visit times corresponds to a particular kind of traversal.