Binary Search Tree -

The height of a BST depends on the order in which the data is inserted into It.
/'\, ex. 1324576 vs. 4236715

Sy /L'\
\S\ 2 C
3 / N/ N\
/ \ > s +

G
How many different ways are there to insert n keys into a tree? VL!

Avg height, over all arrangements of n keys Is O(Qog n ’ .

I I S R N
e |
T S N R N
e |

Announcements

MPS5 avalilable, due 11:59p. EC due
TODAY: balanced BST

http://www.gmatica.com/DataStructures/Trees/AVL/AVLTree.html

5 7
0
Q0
The "height balance” of a tree T is:
b = height(T) - height(T,)

A tree T Is "height balanced” if:
e 7 = £85 OK

, 11:59p.

e 7 = £y, 77, 7}3 y 16l —— . and 7T, and Te are A 1écz/cznc<ga/ ..

operations on BST - rotations

50
30 80,
20) @) €) ko
85) o)

balanced trees - rotations

balanced trees - rotations

balanced trees - rotations summary:.

 there are 4 kinds: left, right, left-right, right-left (symmetric!)
* |ocal operations (subtrees not affected)
 constant time operations

. BST characteristic maintained

GOAL: use rotations to maintain balance of BSTs.

height balanced trees - we have a special name:

Three issues to consider as we move toward implementation:
Rotating
Maintaining height

Detecting imbalance

Maintaining height upon a rotation:

AVL trees: rotations (identifying the need)

¢ If an insertion was In subtrees t3 or t4,
- and If an imbalance iIs detected at
t, then a rotation

about t rebalances the tree.

We gauge this by noting that the
balance factor at t->right is

AVL trees: rotations (identifying the need)

¢ If an Insertion was In subtrees t2 or t3,
- and If an imbalance iIs detected at
t, then a
rotation about t rebalances the
> tree.
o

We gauge this by noting that the
balance factor at t->right is

t4

{3

AVL trees:

struct treeNode {

I' key;
1nt height;

treeNode * left;

treeNode * right;

F;

Insert:

Insert at proper place
check for imbalance
rotate If necessary

update height

AVL tree Iinsertions:

template <class T>
vold AVLTree<T>::1nsert (const T & x, treeNode<T> * & t)
1f(£t == NULL) t = new treeNode<T>(x, 0, NULL, NULL
else 1if(x < t->key) {
insert (x, t->left);
1int balance = height (t->right)-height (t->1left);
1int leftBalance = height(t->left->right)-height (t->left->left);

/

{
)

1T (balance == -2)
1f(leftBalance == -1)
rotate (t)
else
rotate (€t)7

}
else if(x > t->kevy) {

insert (x, t->right);
int balance = height (t->right)-height (t->left);
1nt rightBalance = height(t->right->right)-height (t->right->left);

1f(balance == 2)
1f(rightBalance == 1)
rotate (T)7
else
rotate (€t)7

}
t->height=max (height (t->1left), height (t->right))+ 1;

